Build and Install OpenCV 4.2.0 on Ubuntu with GPU support

Current OpenCV version only support CUDA 10.1.

Download sources

$ wget https://github.com/opencv/opencv/archive/4.2.0.tar.gz
$ wget https://github.com/opencv/opencv_contrib/archive/4.2.0.tar.gz

Extract the compressed files

$ tar zxf opencv-4.2.0.tar.gz
$ tar zxf opencv_contrib-4.2.0.tar.gz

CMake configuration

$ cd opencv-4.2.0
$ mkdir build
$ cd build
$ cmake -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.2.0/modules -DWITH_CUDA=ON -DBUILD_EXAMPLES=ON -DCMAKE_BUILD_TYPE=Release ..

Build

$ make -j8

It takes 15 ~ 20 minutes. And install,

$ sudo make install

Check installations

$ opencv_version 
4.2.0

$ python3
Python 3.6.9 (default, Nov  7 2019, 10:44:02) 
[GCC 8.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import cv2
>>> cv2
<module 'cv2' from '/usr/local/lib/python3.6/dist-packages/cv2/python-3.6/cv2.cpython-36m-x86_64-linux-gnu.so'>
>>> 

Done.

Jetson Nano에서 OpenCV 4.1 with CUDA 빌드

영상처리에 많이 사용되는 OpenCV를 Jetson Nano에서도 사용 가능하다. 빌드 과정은 PC에서와 동일하나 플랫폼의 특성 상 몇가지 다른 부분이 있다. 기본으로 설치되어 있는 패키지를 사용해도 되지만, CUDA를 활용하기 위해선 빌드 과정을 통해 설치하여야 한다.

L4T에는 cuda10.0이 이미 설치되어 있다.

OpenCV github 레포지토리에서 소스를 다운로드한다.

현재 릴리즈된 최신 버전은 4.1.0이다.

먼저 cmake를 설치한다.

$ sudo apt install cmake

다운로드한 압축파일 (opencv-4.1.0.tar.gz, opencv_contrib-4.1.0.tar.gz) 을 풀고, 다음과 같이 cmake를 이용해 빌드 파일을 생성한다.

$ cd opencv-4.1.0
$ mkdir build
$ cd build
$ cmake -DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-4.1.0/modules -DWITH_CUDA=ON -DCUDA_FAST_MATH=1 -DBUILD_EXAMPLES=ON  -DBUILD_opencv_python3=ON -DPYTHON3_INCLUDE_DIR2=/usr/include/python3.6m -DPYTHON3_NUMPY_INCLUDE_DIRS=/usr/lib/python3/dist-packages/numpy/core/include -DCUDA_ARCH_BIN="5.3" -DCUDA_ARCH_PTX=""  -DBUILD_TESTS=OFF -DBUILD_PERF_TESTS=OFF -DBUILD_EXAMPLES=OFF ..

각종 의존 패키지들을 체크하고 정상적으로 종료되면 다음과 같은 결과를 보여준다.

-- General configuration for OpenCV 4.1.0 =====================================
--   Version control:               unknown
-- 
--   Extra modules:
--     Location (extra):            /home/byeongkyu/Downloads/opencv_contrib-4.1.0/modules
--     Version control (extra):     unknown
-- 
--   Platform:
--     Timestamp:                   2019-05-02T04:43:14Z
--     Host:                        Linux 4.9.140-tegra aarch64
--     CMake:                       3.10.2
--     CMake generator:             Unix Makefiles
--     CMake build tool:            /usr/bin/make
--     Configuration:               Release
-- 
--   CPU/HW features:
--     Baseline:                    NEON FP16
--       required:                  NEON
--       disabled:                  VFPV3
-- 
--   C/C++:
--     Built as dynamic libs?:      YES
--     C++ Compiler:                /usr/bin/c++  (ver 7.4.0)
--     C++ flags (Release):         -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-delete-non-virtual-dtor -Wno-comment -Wimplicit-fallthrough=3 -Wno-strict-overflow -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -fvisibility-inlines-hidden -O3 -DNDEBUG  -DNDEBUG
--     C++ flags (Debug):           -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wundef -Winit-self -Wpointer-arith -Wshadow -Wsign-promo -Wuninitialized -Winit-self -Wno-delete-non-virtual-dtor -Wno-comment -Wimplicit-fallthrough=3 -Wno-strict-overflow -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -fvisibility-inlines-hidden -g  -O0 -DDEBUG -D_DEBUG
--     C Compiler:                  /usr/bin/cc
--     C flags (Release):           -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-comment -Wimplicit-fallthrough=3 -Wno-strict-overflow -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -O3 -DNDEBUG  -DNDEBUG
--     C flags (Debug):             -fsigned-char -W -Wall -Werror=return-type -Werror=non-virtual-dtor -Werror=address -Werror=sequence-point -Wformat -Werror=format-security -Wmissing-declarations -Wmissing-prototypes -Wstrict-prototypes -Wundef -Winit-self -Wpointer-arith -Wshadow -Wuninitialized -Winit-self -Wno-comment -Wimplicit-fallthrough=3 -Wno-strict-overflow -fdiagnostics-show-option -pthread -fomit-frame-pointer -ffunction-sections -fdata-sections    -fvisibility=hidden -g  -O0 -DDEBUG -D_DEBUG
--     Linker flags (Release):      -Wl,--gc-sections  
--     Linker flags (Debug):        -Wl,--gc-sections  
--     ccache:                      NO
--     Precompiled headers:         YES
--     Extra dependencies:          m pthread cudart_static dl rt nppc nppial nppicc nppicom nppidei nppif nppig nppim nppist nppisu nppitc npps cublas cufft -L/usr/local/cuda/lib64 -L/usr/lib/aarch64-linux-gnu
--     3rdparty dependencies:
-- 
--   OpenCV modules:
--     To be built:                 aruco bgsegm bioinspired calib3d ccalib core cudaarithm cudabgsegm cudacodec cudafeatures2d cudafilters cudaimgproc cudalegacy cudaobjdetect cudaoptflow cudastereo cudawarping cudev datasets dnn dnn_objdetect dpm face features2d flann fuzzy gapi hfs highgui img_hash imgcodecs imgproc line_descriptor ml objdetect optflow phase_unwrapping photo plot python2 quality reg rgbd saliency shape stereo stitching structured_light superres surface_matching text tracking ts video videoio videostab xfeatures2d ximgproc xobjdetect xphoto
--     Disabled:                    world
--     Disabled by dependency:      -
--     Unavailable:                 cnn_3dobj cvv freetype hdf java js matlab ovis python3 sfm viz
--     Applications:                tests perf_tests examples apps
--     Documentation:               NO
--     Non-free algorithms:         NO
-- 
--   GUI: 
--     GTK+:                        NO
--     VTK support:                 NO
-- 
--   Media I/O: 
--     ZLib:                        /usr/lib/aarch64-linux-gnu/libz.so (ver 1.2.11)
--     JPEG:                        libjpeg-turbo (ver 2.0.2-62)
--     WEBP:                        build (ver encoder: 0x020e)
--     PNG:                         build (ver 1.6.36)
--     TIFF:                        build (ver 42 - 4.0.10)
--     JPEG 2000:                   build (ver 1.900.1)
--     OpenEXR:                     build (ver 1.7.1)
--     HDR:                         YES
--     SUNRASTER:                   YES
--     PXM:                         YES
--     PFM:                         YES
-- 
--   Video I/O:
--     DC1394:                      NO
--     FFMPEG:                      NO
--       avcodec:                   NO
--       avformat:                  NO
--       avutil:                    NO
--       swscale:                   NO
--       avresample:                NO
--     GStreamer:                   YES (1.14.1)
--     v4l/v4l2:                    YES (linux/videodev2.h)
-- 
--   Parallel framework:            pthreads
-- 
--   Trace:                         YES (built-in)
-- 
--   Other third-party libraries:
--     Lapack:                      NO
--     Eigen:                       YES (ver 3.3.4)
--     Custom HAL:                  YES (carotene (ver 0.0.1))
--     Protobuf:                    build (3.5.1)
-- 
--   NVIDIA CUDA:                   YES (ver 10.0, CUFFT CUBLAS FAST_MATH)
--     NVIDIA GPU arch:             53
--     NVIDIA PTX archs:
-- 
--   OpenCL:                        YES (no extra features)
--     Include path:                /home/byeongkyu/Downloads/opencv-4.1.0/3rdparty/include/opencl/1.2
--     Link libraries:              Dynamic load
-- 
--   Python 2:
--     Interpreter:                 /usr/bin/python2.7 (ver 2.7.15)
--     Libraries:                   /usr/lib/aarch64-linux-gnu/libpython2.7.so (ver 2.7.15rc1)
--     numpy:                       /usr/lib/python2.7/dist-packages/numpy/core/include (ver 1.13.3)
--     install path:                lib/python2.7/dist-packages/cv2/python-2.7
-- 
--   Python 3:
--     Interpreter:                 /usr/bin/python3 (ver 3.6.7)
--     Libraries:                   /usr/lib/aarch64-linux-gnu/libpython3.6m.so (ver 3.6.7)
--     numpy:                       /usr/lib/python3/dist-packages/numpy/core/include (ver )
--     install path:                lib/python3.6/dist-packages/cv2/python-3.6
-- 
--   Python (for build):            /usr/bin/python3
--
--   Java:                          
--     ant:                         NO
--     JNI:                         NO
--     Java wrappers:               NO
--     Java tests:                  NO
-- 
--   Install to:                    /usr/local
-- -----------------------------------------------------------------
-- 
-- Configuring done
-- Generating done
-- Build files have been written to: /home/byeongkyu/Downloads/opencv-4.1.0/build

빌드 중 램 부족으로 인한 에러가 발생하므로, swap 파티션을 생성하여 이를 보완하도록 한다.

$ sudo fallocate -l 4.0G /swapfile
$ sudo chmod 600 /swapfile
$ sudo mkswap /swapfile
$ sudo swapon /swapfile

부팅시마다 마운트 하도록 다음의 파일 수정
$ sudo vi /etc/fstab

라인 추가
/swapfile none swap 0 0

자, 이제 빌드를 시작해보면…

$ make -j1

코어 4개를 적극 활용하면 좋겠으나, 램이 4기가 밖에 없는 관계로 램 부족과 같은 에러가 발생하거나 아예 멈춰버리는 불상사가 발생한다. 따라서 쓰레드 1개로 빌드 시작! 컴파일 시간이 어마어마하게 걸리고 방열판이 엄청나게 뜨거워지므로 조심.

빌드가 완료되면, 완료된 파일들을 설치한다. 설치 경로는 /usr/local 이다.

$ sudo make install

이제 제대로 설치되었는지 확인해본다.

$ opencv_version 
4.1.0

$ python3
>>> import cv2
>>> cv2
<module 'cv2' from '/usr/local/lib/python3.6/dist-packages/cv2/python-3.6/cv2.cpython-36m-aarch64-linux-gnu.so'>
>>> cv2.__version__
'4.1.0'

일단 설치는 여기까지!

파이썬으로 만드는 OpenCV 프로젝트

OpenCV는 영상처리 부분에선 많이 (그냥 99% 정도?) 사용되는 소프트웨어 프레임워크이다. 사실 기술서적은 버전이 변화함에 따라 쓸모없어지는 경우가 많아 구입이 좀 꺼려지긴하는데, 기본 기능들 (버전이 변하더라도 사용법은 거의 변하지 않는)에 대해 잘 정리되어 있는 책인듯 하여 구입하였다.

기본 기능부터, 약간의 고급 기능까지 함수들의 사용법에 대해 잘 정리되어 있고, Python으로 예제 코드가 되어 있고 결과물에 대해 스샷까지 잘 되어 있어 책상이 꼽아두었다가 필요할때 한번씩 꺼내볼만하다.

http://www.kyobobook.co.kr/product/detailViewKor.laf?ejkGb=KOR&mallGb=KOR&barcode=9788966262410&orderClick=LEB&Kc=